Impact of Breaking Wave Form Drag on Near-Surface Turbulence and Drag Coefficient over Young Seas at High Winds

نویسندگان

  • NOBUHIRO SUZUKI
  • TETSU HARA
  • PETER P. SULLIVAN
چکیده

The effects of breaking waves on near-surface wind turbulence and drag coefficient are investigated using large-eddy simulation. The impact of intermittent and transient wave breaking events (over a range of scales) is modeled as localized form drag, which generates airflow separation bubbles downstream. The simulations are performed for very young sea conditions under high winds, comparable to previous laboratory experiments in hurricane-strength winds. The results for the drag coefficient in high winds range between about 0.002 and 0.003. In such conditions more than 90% of the total air–sea momentum flux is due to the form drag of breakers; that is, the contributions of the nonbreaking wave form drag and the surface viscous stress are small. Detailed analysis shows that the breaker form drag impedes the shear production of the turbulent kinetic energy (TKE) near the surface and, instead, produces a large amount of small-scale wake turbulence by transferring energy from large-scale motions (such as mean wind and gusts). This process shortcuts the inertial energy cascade and results in large TKE dissipation (integrated over the surface layer) normalized by friction velocity cubed. Consequently, the large production of wake turbulence by breakers in high winds results in the small drag coefficient obtained in this study. The results also suggest that common parameterizations for the mean wind profile and the TKE dissipation inside the wave boundary layer, used in previous Reynolds-averaged Navier–Stokes models, may not be valid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Turbulent Airflow at Young Sea States with Frequent Wave Breaking Events: Large-Eddy Simulation

A neutrally stratified turbulent airflow over a very young sea surface at a high-wind condition was investigated using large-eddy simulations. In such a state, the dominant drag at the sea surface occurs over breaking waves, and the relationship between the dominant drag and local instantaneous surface wind is highly stochastic and anisotropic. To model such a relationship, a bottom boundary st...

متن کامل

Impact of Dominant Breaking Waves on Air–Sea Momentum Exchange and Boundary Layer Turbulence at High Winds

Large-eddy simulation (LES) is used to investigate how dominant breaking waves in the ocean under hurricane-force winds affect the drag and near-surface airflow turbulence. The LES explicitly resolves the wake turbulence produced by dominant-scale breakers. Effects of unresolved roughness such as short breakers, nonbreaking waves, and sea foam are modeled as the subgrid-scale drag. Compared to ...

متن کامل

The wave state and sea spray related parameterization of wind stress applicable from low to extreme winds

[1] Recent field and laboratory observations indicate that the variation of drag coefficient with wind speed at high winds is different from that under low-to-moderate winds. By taking the effects of wave development and sea spray into account, a parameterization of sea surface aerodynamic roughness applicable from low to extreme winds is proposed. The corresponding relationship between drag co...

متن کامل

Nonlinear Formulation of the Bulk Surface Stress over Breaking Waves: Feedback Mechanisms from Air-flow Separation

Historically, our understanding of the air-sea surface stress has been derived from engineering studies of turbulent flows over flat solid surfaces, and more recently, over rigid complex geometries. Over the ocean however, the presence of a free, deformable, moving surface gives rise to a more complicated drag formulation. In fact, within the constant-stress turbulent atmospheric boundary layer...

متن کامل

A Model of Strongly Forced Wind Waves

A model of surface waves generated on deep water by strong winds is proposed. A two-layer approximation is adopted, in which a shallow turbulent layer overlies the lower, infinitely deep layer. The dynamics of the upper layer, which is directly exposed to the wind, are nonlinear and coupled to the linear dynamics in the deep fluid. The authors demonstrate that in such a system there exist stead...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013